知觉学习
The following article is from Posthumanism Author 温世豪
摘要 /Abstract
知觉为我们提供了通达外部世界的途径,但这种途径是由我们的个人体验史所决定的。通过知觉学习,我们可以增强知觉辨别、分类和关注显著属性的能力。我们也会编码有害的偏见和刻板印象。本文回顾了知觉学习的跨学科研究,重点关注其对我们理性和规范理论的影响。知觉学习提出了一种可能性,即我们对认识论证成、审美批评和道德知识等主题的探究不仅仅应包括对认知的检验,而且还应包括对知觉的检验。
引言
放射科医生和患者正在查看X光片。放射科医生看到的是癌症病变,而病人只看到了杂乱无章的灰色和白色。如何解释这种差异?答案是知觉学习。[1] 知觉学习指知觉的长期变化,通常是由于随着时间的推移重复体验某种刺激类型而引起的。[2] 随着放射科医生接受培训和实践,他们的视觉系统会发生变化。他们不仅获得了关于哪种图案模式表明哪种预后的信念,还获得了细粒度辨别和分类的知觉能力。
詹姆斯·吉布森
美国心理学家
詹姆斯·吉布森( James Gibson, 1904年1月27日-1979年12月11日),美国心理学家,被认为是视知觉领域最重要的贡献者之一。吉布森拥有普林斯顿大学哲学学士和心理学博士的学位,并长期任教于康奈尔大学。吉布森挑战了神经系统主动构建有意识的视知觉的观点,并提倡生态心理学,即大脑直接知觉环境刺激,而不需要额外的认知构建或处理。1967年,吉布森当选为美国国家科学院院士。2002年发表的《普通心理学评论》(Review of General Psychology)调查将他列为20世纪被引用最多的心理学家第88位。
放射学只是我们的知觉系统可以学习的众多领域之一。其它相当成熟的知觉学习领域包括国际象棋、狗品种、颜色、音乐、鸡性别鉴定、汽车型号、语言、模式识别和网球。知觉学习是人类思维一个基本且普遍的特征。
知觉学习是科学研究的主题。神经科学可以告诉我们哪些大脑区域在学习过程中发育。心理学可以告诉我们训练程序如何影响知觉学习,获得专业技能需要多少时间、精力和练习,以及专家和新手的知觉技能有何不同。心理学还可以帮助解释知觉学习过程中习得的心理表征的结构和功能。计算模型可以预测知觉学习的模式,并测试其背后的机制的理论。
知觉学习也是一个哲学主题。要确定知觉学习的轮廓,我们需要仔细解释并分析经验数据。[3] 关于知觉学习的理论可以揭示心灵哲学中一些最基本的问题,例如知觉状态的内容和形式、知觉和认知之间的关系,以及注意力在我们心灵生活中的作用。知觉学习能影响知觉的理性作用,包括我们的知觉所能提供的证据的数量和质量。知觉学习还使我们能够了解环境中的审美和道德属性,使规范性价值的表征可用于推理和决策。
知觉学习的科学和哲学研究是相互交织的。实证研究可以引导我们走向哲学理论成熟的领域,哲学问题可以设定心理学研究的议程。在本文的其余部分,我将讨论知觉学习跨学科研究的几个方面。在第二节中,我回顾了知觉学习的研究历史,以及它的一些基本心理学形式。在第三节中,我研究了知觉学习对知觉认识论的影响。在第四节中,我考虑了知觉学习在实用、道德和审美的层面上意味着什么。知觉学习还与心灵哲学中的几个问题有关,例如技能的本质、体验的现象学和知觉的功能,而我在这里没有篇幅详细讨论这些问题。在本文中,我主要关注知觉学习的理性和规范含义,因为它们是能催生新研究的肥沃土壤。[4]
知觉学习的历史和本质
一些关于知觉学习最早的著作关注这样的观点:一个人的概念可以塑造一个人的知觉。公元前3世纪的斯多葛学派认为专家和非专家对同一对象可能有不同的知觉,而这取决于他们的概念库。例如,当听同一首音乐时,受过训练的音乐家对音程的概念可能会让他听到四度和弦,而缺乏音程概念的音乐新手可能只会听到优美的旋律。在这种图景下,习得一个新概念并不总是需要改变知觉,但在许多重要情况下确实如此。[5]
在早期现代时期,随着理性主义者和经验主义者争论知觉背后的心理机制是先天的还是后天习得的,关于知觉学习的研究转向了科学探讨。笛卡尔和马勒伯朗士等理性主义“光学理论家”认为,知觉受先天原则支配。相反,经验主义者认为知觉是由简单的学习机制控制的。例如,巴克莱认为,我们对于距离和大小等空间属性的概念是通过一种连接视觉和触觉表征的“视觉语言”习得的。里德引入了“后天”知觉的概念,即我们通过观察和推理的习惯获得知觉。后天知觉是针对复杂属性(比如几何形式、个人同一性、艺术风格等属性)的习得的敏感性(learned sensitivity)。里德对后天知觉彻底而科学的探讨可被视为我们当代知觉学习模型的先驱。
托马斯·里德
阿伯丁大学硕士
哲学家
托马斯·里德(Thomas Reid, 1710年4月26日-1796年10月7日)是18世纪苏格兰启蒙运动时期哲学家,苏格兰常识学派的创始人。里德拥有阿伯丁大学硕士的学位,并于阿伯丁大学开启了教师生涯,后到格拉斯哥大学接任亚当·斯密成为该校的道德哲学讲座教授。里德以其对哲学方法、知觉理论、认识论、自由意志、伦理学、行动理论和心灵哲学的研究而闻名。里德的哲学深刻地影响了后来的美国实用主义、法国折衷主义和宗教哲学的改革认识论等哲学流派。
20世纪50年代和60年代,埃莉诺·吉布森和詹姆斯·吉布森建立了关于知觉学习的当代心理学研究项目。他们不仅进行了数十项震动领域的实验,还将其结果综合到知觉学习的生态理论(Ecological Theory)中,该理论强调生物与其环境之间的关系。根据生态理论,知觉学习涉及从环境中提取信息以指导行动。
埃莉诺·吉布森
美国心理学家
埃莉诺·吉布森(Eleanor Gibson, 1910年12月7日-2002年12月30日),美国心理学家。她对心理学最重要的贡献是对儿童知觉的研究。埃莉诺在史密斯学院取得学士和硕士学位,并在耶鲁大学获得心理学博士。在20世纪60年代和70年代,吉布森和她的丈夫詹姆斯·吉布森创建了生态学发展理论,强调了知觉的重要性。她对心理学最著名的贡献是视觉悬崖,它研究了人类和动物物种的深度知觉和视觉,表明婴儿拥有深度知觉,能够察觉视觉上的悬崖,进行躲避。埃莉诺于1971年当选为美国国家科学院院士,1977年当选为美国艺术与科学学院院士。1992年,她被授予美国最高的科学荣誉:国家科学奖章,当时仅有五个心理学家被授予国家科学奖章。
埃莉诺·吉布森对婴儿和动物的研究推动了理性主义者和经验主义者之间的争论的进展,即哪些知觉能力是天生的、哪些是后天习得的。吉布森颇具影响力的“视觉悬崖”实验提供了深度知觉是与生俱来而非后天习得的证据:在实验中婴儿因为能看到透明玻璃下的悬崖而拒绝爬上玻璃。吉布森还对新生的小鸡和山羊,以及在黑暗中饲养的大鼠和小猫进行了视觉悬崖实验,发现了与人类婴儿大致相同的结果模式。这些实验表明,我们与其他动物共有一些核心的先天知觉能力。
吉布森还研究了视觉系统如何超越其与生俱来的结构进行学习。她的核心关注点之一是分化(Differentiation),这是一种学习形式,我们在其中学习知觉刺激之间的细粒度差异。在她的一些最重要的实验中,吉布森表明,通过练习,儿童和成人都可以学会检测他们最初认为无法区分的涂鸦和类字母形状之间的细微差别。根据吉布森的说法,分化使得每个人的知觉能够适应她的特定需求和环境。[6]
在过去的60年里,心理学家继续吉布森的研究计划,发现知觉分化发生在各个领域,包括颜色、音素、面孔和味道。这些实验证明了视觉以外的感官模态的分化,包括听觉和味觉。哲学家和心理学家也以吉布森的理论基础为基础。戈德斯通(Goldstone)开发了一种有影响力的知觉学习分类法,我在这里借鉴了它。该分类法描述了知觉学习的四种核心形式:分化、统一、注意力加权和刺激印记。[7]
首先,根据吉布森的观点,分化是创建新的更小的知觉单元的过程。这些单元可能由原子特征或连续维度组成。[8] 例如,在特征层面,人们可能会学会将一小块红色视为深红色(crimson)。在维度层面,人们可能学会看到同一块红色在某些维度上(例如色调、饱和度和亮度)具有特定的值。特征描述和维度描述对于不同类型的知觉分化可能都是正确的。对于知觉学习的好几种形式而言,特征学习和维度学习之间的区别都适用。
知觉学习的第二种形式是单元化(Unitization),它创建更大、更复杂的知觉单元。正如我们可以学会将诸如NATO和BYOB这样的首字母缩略词作为单个实体而不是字母串来记住,我们可以学会将具有多个同时出现的特征或维度的刺激知觉为单独的单元,而不仅仅是特征或维度的集合。单元化的例子包括单词知觉、棋子知觉和狗品种知觉。我们还可以学习单元化全新的形式,例如格力宝(“Greebles”)类的图形,即各部分的形状和方向不同的图形。
知觉学习的第三种形式是刺激印记(Stimulus Imprinting)。在刺激印记中,专门的感受器被开发以检测特定的刺激、特征或刺激的维度。例如,音调频率感受器是在初级听觉皮层中发育的,而面孔感受器是在梭状回面孔区中发育的。这些专门的感受器的输出可以在随后的知觉处理中组合起来,以创建复杂的对象和场景表征。
知觉学习的第四种形式,注意力加权(Attentional Weighting),涉及学习如何引导你的注意力。关于注意力在知觉学习中的作用的研究至少可以追溯到威廉·詹姆斯,他描述了如何通过选择性注意和训练来训练知觉系统。最近的心理学研究集中在注意刺激的特征或维度如何增强我们检测和区分这些刺激的能力。[9] 一种特别有趣的注意力加权类型涉及跨类别边界的知觉变化。当我们了解到刺激属于某一类别时,我们开始关注这些类别的区分特征和/或维度。这不仅增强了我们区分不同类别的刺激的能力,而且还可能扭曲我们的知觉,夸大中心类别特征或维度,因为它们在处理过程中权重如此之高。这种类别驱动的知觉学习广泛存在,包括音素、亮度和大小。[10]
这些不同形式的知觉学习可以共同发挥作用。例如,放射科医生可以使用视觉分化来识别图像的低对比度方面,同时使用视觉单元化来识别肿瘤或病变。这些习得的知觉技能奠定了知觉专业技能的基础,实现了诸如准确的医疗诊断和精湛的音乐表演等非凡的知觉技艺。但知觉学习也有更平凡的实际用途,例如帮助我们识别朋友和家人,引导我们上下班,以及帮我们判断食物何时煮熟。[11]
虽然人类围绕知觉专业技能发展社会活动和职业的能力可能是独一无二的,但知觉学习本身——甚至是刻意的知觉训练——在整个动物界都存在。鸽子和老鼠可以学会从视觉上辨别艺术风格,从毕加索中挑选出雷诺阿的作品。狗可以通过接受糖尿病预警犬训练来学习闻到低血糖的气味。孔雀鱼可以学习颜色和形状辨别。人类婴儿也表现出令人印象深刻的知觉学习能力。3.5个月大的婴儿可以学会在视觉上区分空间配置不同的面孔。婴儿还可以通过接触婴儿导向的语音来学习提高他们的听觉分词和音素分类。婴儿和动物中知觉学习的存在表明,虽然知觉学习有时确实会利用认知,例如在国际象棋领域和数学领域,知觉学习不需要复杂的认知系统的存在。
这些针对婴儿和动物的实验仅提供知觉学习的行为证据。因此,人们可能想知道婴儿和动物辨别能力的各种提升背后到底是何种类型的知觉变化。这些变化是知觉内容、知觉格式、知觉现象学的变化,还是仅仅是知觉和行动间联系的变化?[12] 这个问题必须针对每个实验单独考虑,限于文章长度,我无法在这里完整地回答它。就我的目的而言,我在一种宽泛的意义上理解知觉学习,使之可以涵盖所有上述类型的知觉变化。这符合吉布森对知觉学习的定义的精神:知觉学习是由于随时间推移重复体验某一刺激类型而引起的、知觉的长期变化。[13] 这些持久的变化可能涉及内容、格式、现象、与行动的联系或知觉系统的其它特征。[14]
知觉学习和认识论
知觉学习的一个重要的哲学影响是,它促使我们考虑理性、证成(justification)、专业技能和知识等认识论概念是否在认知之外也适用。传统上,认知被认为是这些概念的主要根源。认知状态和过程,例如信念、判断和推理模式,是大多数关于理性的日常讨论和大多数主流认识论的主题。然而,知觉学习强调,知觉状态和过程具有许多构成我们认识论评价基础的核心特征,例如对存储的信息体的依赖和对新理由的敏感性。
对知觉的经典理解是模块化的、先天指定的、依赖于专有的信息存储的输入-输出系统。根据这种理解,虽然知觉状态会根据所遇到的刺激而变化,但它们不能同时受到信念、欲望和期望等认知状态的影响。因此,知觉被称为“认知上难以渗透的”(cognitive impenetrable)。这种固定的知觉模式与“深思熟虑”(deliberative thought)相反,在深思熟虑的过程中,信念、期望、欲望和其他广泛的认知状态经常相互影响。如果知觉对我们理性思考的信念不敏感,那么就很难看出知觉能如何被理性地评价为有证成的(justified)或没有证成的(unjustified)。相反,它似乎超出了理性评价的范围。
芝农·派利夏恩
加拿大认知科学家
哲学家
芝农·派利夏恩(Zenon Pylyshyn, 1937年8月25日-2022年12月6日),是加拿大认知科学家和哲学家。派恩夏利拥有麦吉尔大学工程物理学学士和萨斯喀彻温大学实验心理学博士学位。他曾经担任罗格斯大学认知科学教授和罗格斯大学认知科学中心主任。派利夏恩的研究通常涉及对知觉、想象和推理背后的人类认知系统本质的理论分析。他发展了视觉索引理论(FINST理论),该理论假设一种前概念机制负责个体化、跟踪和直接指称认知过程编码的视觉属性。
一些哲学家和心理学家认为,与这一经典理解正相反,知觉是认知上可渗透的,我们的信念、欲望和期望可以影响知觉。认知渗透的可能性引发了这样的论证:知觉体验可以对认知状态提供的理由做出反应,因此可以被理性评价。考虑到认知渗透是否确实存在颇有争议,而知觉对理由是否能作出反应又对认识论有丰富的认识影响,故而无论认知渗透性结论如何,寻找知觉对理性作出反应的其它方式都值得一做。
内德·布洛克
美国哲学家
哈佛大学哲学博士
内德·布洛克(Ned Block, 1942-),美国哲学家,主要研究心灵哲学、认知科学哲学和意识理论。布洛克于1971年在希拉里·普特南的指导下获得哈佛大学哲学博士学位。之后,他加入麻省理工学院担任哲学助理教授(1971-1977),随后担任哲学副教授(1977-1983)、哲学教授(1983-1996)和哲学系系主任(1989-1995)。自1996年起,他担任纽约大学哲学和心理学教授。布洛克是哲学与心理学学会前任主席,并于2004年当选为美国艺术与科学学院院士。
知觉学习就提供了一种这样的方式。历时知觉学习的存在远比共时认知渗透的存在更少争议。甚至福多也承认,知觉系统可以缓慢地、逐渐地受到环境刺激或主体背景信念的影响,尽管是以一种有限的方式。[15] 虽然某些形式的知觉学习涉及对认知中存储的信息的反应,但知觉学习通常不被归类为认知渗透的一种形式,因为它是历时而不是共时的。[16] 与之对立的是,一些哲学家认为,知觉学习应该被理解为认知渗透的一种形式(从而质疑模块化),因为知觉学习表明知觉和认知没有真正独立的信息存储处。无论知觉学习最终是否是认知渗透的一种形式,在认识论上的重要一点是,与共时认知渗透相比,知觉学习是一种能证明知觉对理性敏感的、在心理学上争议较少的方式。
知觉学习如何表现出对理性的敏感性?当信念或推理模式与某种知觉刺激类型结合反复出现时,相关信息可以逐渐转移到知觉中。例如,通过广泛地体验观察棋盘和思考可行的走法,国际象棋棋手学会在视觉上将棋盘上的棋子单元化成组块。单元化不仅是由视觉刺激驱动的,而且还是由有关游戏规则和策略的知识所驱动的。[17] 这种单元化是对国际象棋大师的经验和知识所提供的理由的理性反应,还是仅仅是一种原始的因果反应,这是一个重要的哲学问题。[18] 至少,这些例子表明,知觉学习具有对新信息的灵活性和敏感性,这是认知中推理的典型特征。
知觉学习的贝叶斯模型进一步支持知觉与推理有很多共同点的观点。根据知觉的贝叶斯模型,知觉的基本处理结构是贝叶斯更新。这个想法源于19世纪心理学家赫尔曼·冯·亥姆霍兹,他认为知觉是由一系列习得的概率推断组成的。[19] 这一理解在贝叶斯知觉模型的当代研究中继续蓬勃发展。知觉的贝叶斯模型指出,知觉学习包括根据贝叶斯定理更新环境的先验概率以回应体验到的数据。贝叶斯更新是一种范式理性的推理模式。虽然知觉贝叶斯模型与认知贝叶斯模型可能使用不同的先验数据库,但它们仍然共享一个对于理性的信念修正而言非常典型的核心处理结构。[20]
知觉学习的理性影响也延伸到知觉为信念提供的证成。知觉学习可以影响我们的知觉状态,从而影响它们所证成的信念。在某些观点看来,知觉学习最好被描述为我们识别和区分物体的能力发生了变化。根据这种观点,当我们学会根据特定的经验类型来识别对象或特征时,我们就有正当理由在此基础上识别对象或特征。另一些观点认为,知觉学习最好被描述为知觉状态内容的变化。根据这种观点,知觉内容的变化会导致体验所证成的信念发生相应的转变。例如,在颜色区分中,受试者学会区分相似的颜色,这表明他们的知觉体验的内容从<黄色>转变为<金丝雀黄>。[21] 这种新的知觉体验证成了一套新的信念,例如金丝雀黄比第戎黄更浅的信念。其他形式的知觉学习,如单元化、刺激印记和注意力加权,同样可以改变知觉的内容和能力。其中一些形式的知觉学习可以整合跨感官模态的信息,产生新的多感官知觉内容和能力,例如节奏知觉或味道知觉。当知觉学习以这些不同的方式改变知觉时,它就会改变知觉所证成的信念。
通过这些变化,知觉学习为丰富的(或高阶的)的知觉体验内容提供了一条潜在的心理途径。视觉无可争议地具有薄(或低阶)内容,其中包括形状、颜色、纹理、运动、亮度和空间关系等属性。一些哲学家认为,视觉体验也有丰富的内容,包括自然类、个人同一性、情感、行动可供性(action affordances)和道德地位等属性。[22] 一个很自然的想法是,如果知觉有丰富的内容的话,它们是通过认知渗透的方式进入知觉的。例如,你相信一条狗是澳大利亚牧羊犬的信念可能会导致你将这条狗视为澳大利亚牧羊犬。然而,如前所述,这种共时认知渗透是否确实发生存在争议。[23] 此外,即使在主体缺乏相关的同时认知状态时,许多丰富的知觉内容的情况同样会发生(例如, 人们可能会在视觉上知觉到球落在盆栽植物中导致灯熄灭了,尽管他们相信这两个事件无关)。因此,如果能有超越认知渗透的替代方法来丰富知觉体验的内容,那么关于知觉具有丰富内容的论点就会有更坚实的基础。
知觉学习就提供了一种这样的替代方法。例如,经验丰富的狗美容师可能会学会将狗视为澳大利亚牧羊犬或边境牧羊犬。从特征角度来看,这种学习将涉及在视觉上单元化每个狗品种的共同特征,例如大小、头部形状、眼睛颜色以及皮毛长度、纹理和图案。从维度角度来看,这种学习将涉及将每个品种放置在不同的连续维度的空间中,例如从小到大的身体、从尖到圆的头、从深色到浅色的眼睛、从长到短的皮毛、从粗糙到光滑的皮毛、从纯色到杂色的毛色。[24] 不管怎样,通过知觉学习获得的丰富的内容增强了我们基于知觉体验所能知道的范围。[25] 比如,你将一条狗知觉为澳大利亚牧羊犬,这证成了你认为这条狗是澳大利亚牧羊犬的信念,以及你认为这条狗需要大量锻炼的信念。
知觉学习不仅影响知觉所能证成的东西,而且还对这种证成的来源提出质疑。认识论内在主义者通常将知觉视为“未证成的证成者”(unjustified justifier),这意味着知觉为信念提供了证成,但其本身在认识论上不能被评价为有证成的或没有证成的。在这幅图景中,知觉凭借其现象特征提供证成,而不是凭借任何继承而来的证成性地位。相比之下,信念凭借其自身的证成性地位提供证成,而这种地位通常源自其形成和维持的方式。如果我们将知觉视为一面反映世界的镜子,那么知觉是未证成的证成者的观点就很有吸引力,但知觉学习的心理学表明,知觉也可以反映我们自己过去的经验和知识。[26] 那些由知觉学习产生的知觉体验是根据存储的知觉信息而形成的,这与信念是根据支持性的信念而形成的方式非常相似。例如,当一位国际象棋大师在棋盘上知觉到后翼易位时,她的视觉体验不仅是根据她此前对车和王位置的视觉表征而形成的,而且还根据视觉单位化存储的信息而形成,即如果车和王都在这些位置,就会出现一个后翼易位。这些状态不仅是后翼易位的知觉体验的因果前提,而且在认识论上合理地证成了它,因为它们的内容、结构、认识论依赖关系以及能根据新信息灵活调整的程度与那些典型的证成信念极为相似。知觉学习危及了知觉作为未证成的证成者的地位,并提高了认识论证成范围可能延伸到知觉的可能性。[27]
罗德里克·奇泽姆
美国哲学家
布朗大学哲学学士
罗德里克·奇泽姆(Roderick Chisholm, 1916年11月27日-1999年1月19日),美国哲学家,以其在认识论、形而上学、自由意志、价值理论和知觉哲学方面的工作而闻名。奇泽姆拥有布朗大学哲学学士学位,并在C. I. 刘易斯和D. C. 威廉姆斯的指导下在哈佛大学获得博士学位。《斯坦福哲学百科全书》评价他“被广泛认为是20世纪最具创造力、生产力和影响力的美国哲学家之一”。
到目前为止,本节讨论的考虑表明,知觉学习有可能以多种方式在认识上增强知觉,包括知觉所证成的信念、知觉对理性做出反应的能力以及知觉的证成性地位。当知觉学习在增强知觉方面特别成功时,就会产生知觉专业技能。专业技能不仅是一种心理学概念,也是一种认识论概念。专家与真理、证据或知识有着特殊的联系。虽然关于专业技能的具体构成有多种理论,但人们普遍认为它体现在个人的信念中。中世纪文学的专家对中世纪文本的信念与非专家不同。然而,通过知觉学习,专业技能可以还可以体现在知觉中,而不是(或除了)信念。例如,通过嗅觉训练,调香师的嗅觉系统在学习了区分和分类气味后会变得与非专家不同。[28]
正如认知专业技能有多种理论一样,知觉专业技能也有多种理论。这些知觉专业技能的理论嫁接到了知觉学习本身的理论,特别是知觉学习是否涉及学习新事实或新能力的理论。根据知觉学习有关知觉地学习新事实的观点,知觉专业技能即对这些新事实进行实质性的或特殊的获取。例如,专业调香师知道茉莉花的气味比栀子花更甜,并且知道许多其他花的相对甜味的事实。她通过经验和相应的表征性内容来获取这些事实。根据知觉学习有关学习新的知觉能力的观点,知觉专业技能是由一组实质性的或特殊的知觉能力构成的。例如,专业调香师有能力区分茉莉花和栀子花的香味,并有能力根据甜度对花香进行排序。根据这种观点,知觉专业技能不需要包含在体验的表征性内容中,而是体现在主体如何使用她的经验中。
凯西·奥卡拉汉
普林斯顿大学
哲学博士
凯西·奥卡拉汉(Casey O'Callaghan),普林斯顿大学哲学博士,华盛顿大学圣路易斯分校哲学-神经科学-心理学教授。奥卡拉汉的研究领域主要集中在心灵哲学、知觉哲学和形而上学。他目前主要研究感知意识如何与其对象相关联以及它如何塑造我们对这些对象的性质的理解。他也关注言语知觉、感官模态之间相互作用对更广泛的知觉理论的重要性、如何区分感官、知觉与超知觉认知有何不同、心理学解释和心理学分类学。
这两种观点并不相互排斥。正如乔曼斯基(Chomanski)和丘德诺夫(Chudnoff)所指出的,知觉专业技能可能既涉及在体验中表征新事实,又涉及获得新能力。沿着这些思路,丘德诺夫认为,知觉专业技能涉及形成基于特定领域的搜索策略的印象的能力。这些印象是知觉经验,具有独特的表征内容,是新手无法达到的。例如,放射科医生在查看X射线时可能会进行专家搜索策略,从而获得非专家无法获得的对病变的知觉体验。从这个角度来看,新能力的获取和表征性内容的改变是齐头并进的。
无论这些关于知觉专业技能的解释中的哪一个被证明是正确的,最近的知觉专业技能的理论表明,专业技能的认识论在知觉领域和认知领域同样丰富。
知觉学习的实用的、
道德的和审美的意义
知觉学习不仅具有认识论的意义,而且还与哲学探究的其他领域相关。在本节中,我将考察其中的一些联系。
首先,知觉学习有许多实用用途,可以帮助我们实现目标。其中一种用途是改变知觉以适应认知和行动的需求。例如,学习区分新语言中的音素有助于语言理解和语音生成。知觉学习还可以释放注意力和记忆等认知资源,以便它们可用于其他任务。[29] 例如,当我们学会在听觉上自动区分音素,而不是通过刻意的认知检查时,我们就会解放注意力。知觉学习还可以帮助补偿感官障碍,例如老花眼(眼睛聚焦能力下降)和弱视(一只眼睛视力下降)。知觉学习还可以通过帮助主体将注意力集中到刺激的各个方面来使用感官替代设备。[30] 知觉专业技能对于放射学、医学、工程、车辆机械、建筑、产品测试、建筑、景观美化等多种职业至关重要。
在道德领域,知觉学习可以帮助我们识别与道德相关的属性。例如,习得的知觉注意力分布可能有助于检测故意错误发音的外国名字,或是构成微冒犯的轻蔑的肢体语言。在这里,知觉学习有助于检测能作为道德属性(例如道德善与恶)的基础的描述性属性(例如语音的准确性或视觉手势的形状)。这种形式的知觉通常被称为“间接道德感知”。一些哲学家认为,知觉学习也可以帮助我们直接知觉道德属性。这个想法可以追溯到亚里士多德,他强调了“表面善”(apparent good)在我们的道德心理学中的重要性。道德知觉的观念在当代哲学中仍然生机勃勃。[31] Audi认为,我们不仅知觉道德属性,而且道德知觉支持(或至少特别适合)关于这些道德属性的形而上学实在论(metaphysical realism)版本。[32] 在这里,我对道德属性的形而上学问题持中立态度,但任何对道德知觉的解释都应该能够解释道德知觉的对象和正确性条件。
罗伯特·奥迪
美国哲学家
罗伯特·奥迪(Robert Audi, 1941-),美国哲学家,其主要的研究领域集中在认识论、伦理学(特别是伦理直觉主义)、理性和行动理论。奥迪对认识论的主要贡献包括他对易错基础主义的辩护。奥迪在科尔盖特大学获得学士学位,在密歇根大学获得硕士和博士学位。他现为圣母大学约翰·A·奥布莱恩哲学教授。他是美国哲学协会和基督教哲学家协会的前任主席。他于2018年当选为美国艺术与科学院院士。
我们如何获得直接或间接道德知觉的能力?至少道德知觉的核心有可能是与生俱来的。然而,道德知觉的准确性和敏感性的高度个体差异表明它受到学习的影响。一些哲学家认为,道德知觉的学习是一种认知渗透,其中知觉受到预先存在的道德知识的影响。对于某些形式的道德知觉学习来说,完全自下而上的过程在心理学上也是合理的,但是当与道德知觉的直接观点相结合时,他们面临着这样的问题:在没有认知影响的情况下,知觉如何直接表征抽象的道德属性?道德知觉的间接观点避免了这个问题,因为它们只要求我们能学会改进对道德属性描述性基础的检测。道德属性的描述性基础通常是那些我们已经承认可以在没有认知影响的情况下被表征的属性。
在美学领域,知觉学习最引人注目的表现也许是它的艺术和叙事描述,这为了解知觉学习的现象学提供了一个窗口。在《格列佛游记》(Gulliver's Travels)中,斯威夫特描述了格列佛在大人国呆了四年后回到英国的故乡的故事。大人国的草和树一样高,人们和摩天大楼一样高。格列佛的视觉体验已经适应了这些巨大的尺寸,因此人类大小的物体现在显得微不足道:“我看到他的菜肴只有三便士银币大小,一条猪腿一口就可以吃完,一个杯子还没有果壳那么大”。虽然这些文学描述在心理上可能不准确,但它们能让我们从那些知觉学习的历史与我们截然不同的人的角度看问题。
《格列佛游记》插图
—
Jonathan Swift
同样重要的是知觉学习作为艺术和批判技能的核心的作用。正如放射科医生可以学会在胸部扫描中看到肺癌一样,画家也可以学会看到笔触类型的细微差别。音乐评论家可能会学会聆听经典作品的典故或优雅等丰富的审美属性。[33] 审美知觉能力往往体现在注意力上。心理学研究表明,受过训练的艺术家可以更好地关注艺术品的重要结构和抽象特征,而新手则将注意力集中在物体和人物上。这种受过教育的注意力分配似乎是休谟在其著作《论品味的标准》(Of the Standard of Taste)中所描述的专家批判品味的基础。休谟认为,通过评价与比较审美对象的充分训练,每个人的品味最终都会与理想批评家的品味趋同。虽然休谟并不清楚这种训练具体包括什么,但知觉学习似乎是其核心组成部分之一。
某些形式的知觉学习让人质疑,我们的批判实践是否抓住了客观的审美真理。重复曝光效应(mere exposure effect)是知觉学习的一种形式。根据重复曝光效应,重复地接触某种刺激类型(比如某种艺术风格,某种技法,或某类主题)会增强我们对该刺激类型的喜爱程度。这是因为重复曝光会增加知觉的流畅性(处理刺激的容易程度),而更高的流畅性会带来更大的积极感觉(即,容易处理的感觉很好)。这种积极的感觉随后被错误地归因于所知觉的艺术作品。如果我们积极的审美评价是内部处理动态的函数,而非艺术品外在特征的函数,那么美在某种意义上似乎是情人眼里出西施。[34]
虽然知觉学习在哲学探究领域是有益的,但它也有其缺点。知觉学习通常会追踪统计规律,因此统计异常会导致知觉错觉。这些错觉会产生负面的认知后果。例如,通过多感官语音知觉,我们学会预期某些嘴巴的动作与某些声音同时发生。当这些信号无法同时出现并且视觉和听觉呈现出不同的音节时,我们就会体验到与两个音节都不匹配的错觉。这种错觉破坏了我们对外部世界的认识。它们也有负面的实用影响。例如,当体验言语知觉的错觉时,我们可能无法实现理解和交流的实用目标。
知觉学习也可能编码有害的偏见和刻板印象。诸如黑人和犯罪之类的概念可以通过媒体描绘等方式联系起来,并随后发挥“视觉调整装置”(visual tuning devices)的作用,在犯罪概念形成后将视觉注意力偏向黑人面孔。[35] 这些视觉偏见可能会导致对黑人的不公正和不成比例的逮捕。它们还可能进一步巩固驱动它们的刻板联想,形成自我延续的循环。这种偏见的知觉表现促使哲学家质疑统计概括是否总是合理的。知觉偏见的案例似乎构成了道德和认识上的失败。[36]
杰西·蒙顿
剑桥大学哲学副教授
圣约翰学院研究员
杰西·蒙顿(Jessie Munton)是剑桥大学哲学副教授、圣约翰学院的研究员、圣约翰学院2023-2024学年哲学研究主任。她的核心研究领域是心灵哲学、认识论、心理学哲学和精神病学哲学。她拥有牛津大学古典学学士和哲学硕士学位,以及耶鲁大学哲学博士学位。她是2023年Philip Leverhulme奖的获得者。在接下来的几年里,她将利用这笔资金思考消极认识论:我们如何评估无知、遗忘或未能进行探究或未能收集证据?这部分取决于我们的心灵哲学:我们如何建模那些由空白或缺席构成的负面认知空间和状态?这种兴趣反过来又源于对显着性和注意力的思考——它们在我们的心理生活中发挥的作用,以及我们如何从认识论的角度评估它们。过去,她写过关于视觉体验随着时间延伸和发展的方式,以及知觉不确定性的文章。她还研究偏见:什么时候某件事是偏见,什么时候只是从经验中合法学习的情况?有问题的偏见一定总是涉及错误或不合理的信念吗?我们可以从认知评估局限性的偏见中学到什么?
知觉学习的另一个负面道德影响在于,可能出现专家虐待狂或道德变态。[37] 如果我们能够学会如何知觉道德属性,一些人可能会在因社会结构、教养或个人恶意而导致的错误情境下学会知觉善恶。例如,在狄更斯的《远大前程》(Great Expectations)中,郝薇香小姐在一种不重视情感表达、重视嘲笑和折磨男人的道德体系下抚养艾丝黛拉。我们可以想象这个道德体系的某些部分表现为异常的道德观念。例如,艾丝黛拉可能认为情感的表达在道德上是不好的,而折磨男人在道德上是好的。[38] 当个体在性别歧视、种族主义或恐同社区中长大时,这种错误的道德知觉可能会在现实世界中出现。正如Goldie指出的那样,知觉在现象学上的感觉是直接的(正如知觉学习产生的状态通常所做的那样),但这并不能保证它是准确的或合理的。
在美学领域,知觉学习还有一个令人惊讶的缺点,就是它有时会削弱我们的审美愉悦。当我们学会区分好与坏时,我们对坏的体验往往会受到影响。一个了解优质咖啡豆和劣质咖啡豆味道差异的咖啡饮用者可能会开始主动讨厌后者,而之前他对每一杯咖啡都感到满意。学会关注摄影、导演选择和制作设计的各个方面的影评人可能会发现自己过于关注这些细节,以至于无法将电影作为一部整体的作品来欣赏。
这些负面影响暴露了我们对知觉学习的控制的局限性。我们无法直接确定我们的知觉系统习得了哪些规律,这种学习何时开始和停止,或是学习何时会迁移到类似的环境。但有些事是我们能做的:我们可以改变我们所接触的刺激,我们可以刻意地集中注意力,我们可以奖励有效的学习。这些技术为在某种程度上间接控制知觉学习的积极和消极方面提供了希望。
总结
知觉学习促使我们将许多哲学探究扩展到知觉领域。证成、专业技能、统计推理、艺术批评、道德知识等等不仅由我们的信念和行动构成,其分支还延伸到了知觉中。对这些分支的探索刚刚起步,但它们有潜力将我们的知觉图景从纯粹的信息输入系统转化为受到理性和规范性输入的系统。
注释
1 For evidence that radiologists undergo perceptual learning, see Krupinski (1996), Sowden et al. (2000), Sheridan and
Reingold (2017), Brennan et al. (2018), Alexander et al. (2020), Johnston et al. (2020), Richter et al. (2020), and Sha
et al. (2020).
2 This is a paraphrase. Gibson's own wording of the definition of perceptual learning is, “any relatively permanent and consist ent change in the perception of a stimulus array, following practice or experience with this array” (Gibson, 1963, p. 29).
3 E.g., Connolly (2019a) draws on empirical data to defend the philosophical claim that perceptual learning leads to genuine
changes in perception.
4 For additional overviews of perceptual learning, see Goldstone (1998), Kellman and Massey (2013), Goldstone and
Byrge (2015), Connolly (2017, 2019a), Seitz (2017), and Prettyman (2018).
5 The 14th century Nyāya philosopher Gangesha Upadhyaya holds a similar view according to which some of our percep tions are nonconceptual whereas others are conceptually laden (Phillips, 2012).
6 For an overview of Gibson's theory of perceptual learning, see Adolph and Kretch (2015).
7 Goldstone (1998) presents these four forms of perceptual learning in a different order from the one I use here. This taxon omy is developed in Goldstone and Byrge (2015). For additional discussion of the taxonomy of perceptual learning, see
Prettyman (2018) and Connolly (2019a).
8 I thank an anonymous reviewer for suggesting I highlight this distinction and for pointing me to the citations of the dimen sional account.
9 I thank an anonymous reviewer for sharing these two citations. For further discussion of attentional weighting, see
Connolly (2019a) and Ransom (2020b).
10 For arguments that categorical perception involves locating an object within a region of dimensional space, see
Burnston (2017a, 2017b).
11 In one of the earliest examples of perceptual learning, Aristotle discusses the example of a baker who has learned how to
see a loaf of bread as done when it is ready to come out of the oven (De Anima, 1112b33-1113a2).
12 I thank an anonymous reviewer for raising these questions.
13 While Gibson's 1963 definition of perceptual learning is stated permissively, at certain points in her career she held more
restrictive views about the definition of perceptual learning. In her 1969 book she held that perceptual learning involves
learning about distinctive features of objects—a kind of change in content (Gibson, 1969). In her 2000 book, she held
that perceptual learning involves learning affordances for action (Gibson & Pick, 2000). See Adolph and Kretch (2015) for
discussion.
14 While the notion of perceptual learning I use here is relatively permissive, others have argued for more restrictive defi nitions of perceptual learning. For further discussion, see Goldstone (1998), Goldstone and Byrge (2015), Watanabe and
Sasaki (2015), Connolly (2017, 2019a), Prettyman (2018), Chudnoff (2020).
15 I thank an anonymous referee for emphasizing this point. See Connolly (2017, section 3.4) for further discussion of the
debate between Fodor and Churchland over whether perceptual learning is a form of cognitive penetration.
16 See Quilty-Dunn (2020b) for arguments that the notion of cognitive penetration permits of diachronic cognitive influence,
while the notion of informational encapsulation does not.
17 Other domains of perceptual learning that may be partially driven by cognition include Greebles (Gauthier & Tarr, 1997),
radiology (Krupinsky, 1996), and phonemes (Lively et al., 1993).
18 For arguments that perceptual learning does involve rational responses to reasons, see Jenkin (2023).
19 See Westheimer(2008) for discussion of the continuity between Helmholtz's writings and the contemporary Bayesian project.
20 For discussion of the extent of the similarities between perceptual and cognitive Bayesian updating, see Orlandi (2014)
and Rescorla (2015).
21 I use angle brackets to denote contents.
22 See Mandelbaum (2017) for arguments that the outputs of vision are basic-level concepts. This view is more permissive
than a view that posits exclusively thin contents, but it also puts significant restrictions on rich contents.
23 For arguments in favor of cognitive penetration, see Prinz (2006), Lupyan (2015), Block (2022). For arguments against
cognitive penetration, see Fodor (1983), Pylyshyn (1999), and Firestone and Scholl (2016).
24 An anonymous reviewer helpfully notes that the possibility that perceptual learning enriches the contents of perceptions
may be dependent on the format of perception (i.e., whether perception is iconic or discursive). If perceptual representa tions are iconic and cognitive representations are discursive, perceptual learning could enrich perception without the
involvement of cognition by increasing the range of iconic features or dimensions represented. If perceptual and cognitive
representations are both discursive, cognitive penetration may be necessary to generate new discursive symbols. The truth
of this latter claim depends on theories of concept/symbol acquisition, as well as on what counts as cognitive penetration.
For discussion of this set of issues, see Burnston (2017a, 2017b, 2020), Toribio (2018a, 2018b), Quilty-Dunn (2020a),
Mylopoulos (2021), Shepherd (2021), and Ferretti and Caiani (forthcoming). I thank the anonymous reviewer for suggest ing this list of citations.
25 For further discussion of whether perceptual learning leads to rich contents of experience, see Siegel and Byrne (2017),
Connolly (2019a), and Ransom (2020b, 2020a). For discussion of the idea that the information stored in cognitively impen etrable modules can change due to experience, see Scholl and Tremolet (2000), Goldstone (2015), and Toribio (2018b).
26 For a different kind of critique of the picture of perception as a mirror, see Rorty (1979).
27 See Siegel (2017) for related arguments that cognitive penetration jeopardizes the role of perceptual experience as an
unjustified justified. See Chudnoff (2017) for related arguments that perceptual learning gives us reason to think percep tion not only generates new justification, but also preserves justification derived from background beliefs (cf. Brogaard &
Gatzia, 2018).
28 Some forms of perceptual expertise may emerge without deliberate training. For example, Joy Milne, a rare “Super
Smeller,” spontaneously discovered that she could detect Parkinson's disease by odor with astonishing accuracy (Trivedi
et al., 2019). In such cases, perceptual expertise may be innate or unintentionally learned.
29 Connolly argues that freeing up cognitive resources is not only a practical implication of perceptual learning but also its
function (Connolly, 2019a).
30 Sensory substitution devices translate environmental information into novel formats so that it can be accessed by
people with sensory deficits. For example, Bach-y-Rita's TVSS (Tactile-Visual-Sensory-Substitution) device for people
who are blind or visually impaired converts visual information into tactile stimulation on a subject's back (Bach-y-Rita &
Kercel, 2003). Eagleman's Neosensory Buzz wristband for people who are deaf or hard of hearing converts auditory infor mation to vibrations (Perrotta et al., 2021). By learning to perceptually attend to the relevant properties of the sensory
stimulation provided by the device, subjects can decode the meaning of the environmental information. There may also
be significant cognitive involvement in this learning process (Deroy & Auvray, 2012).
31 For critique and discussion of the limitations of moral perception, see Dancy (2010), Chudnoff (2016), and Reiland (2021).
32 Audi (2018) clarifies that his 2013 view leaves open the possibility of anti-realist views of moral properties.
33 A similar issue arises here as in the moral domain with respect to realism about aesthetic properties. One might think
that the ability to perceive rich aesthetic properties such as gracefulness supports metaphysical realism about those
properties. However, as in the moral case, the perception of rich aesthetic properties is compatible with anti-realist views
of those properties so long as the anti-realist can offer a plausible story about their objects and correctness conditions.
34 For criticisms of this argument, see Nanay (2017).
35 For additional discussion of the implications of Eberhardt's results, see Alexander (2010, pp. 101-106),
Siegel (2017, pp. 174-177), Brownstein (2018, pp. 35-36), and Munton (2019).
36 For further discussion of the downsides of perceptual learning, see Connolly (2019a, pp. 216-217).
37 I thank an anonymous reviewer for suggesting this possibility.
38 This kind of perceptual learning may or may not be psychologically realistic. This is a hypothetical example meant to illus trate the impacts of this type of moral perceptual learning, if it does occur.
参考文献
Abernethy, B. (1990). Expertise, visual search, and information pick-up in squash. Perception, 19(1), 63–71. https://doi.
org/10.1068/p190063
Adolph, K. E., & Kretch, K. S. (2015). Gibson’s theory of perceptual learning. In International Encyclopedia of the Social and
Behavioral Sciences (2nd ed., pp. 127–134). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.23096-1
Alexander, M. (2010). The new Jim Crow: Mass incarceration in the age of colorblindness. The New Press.
Alexander, R. G., Waite, S., Macknik, S. L., & Martinez-Conde, S. (2020). What do radiologists look for? Advances and limi tations of perceptual learning in radiologic search. Journal of Vision, 20(10), 17. https://doi.org/10.1167/jov.20.10.17
Annas, J. (1992). Hellenistic philosophy of mind. University of California Press.
Antes, J. R., & Kristjanson, A. F. (1991). Discriminating artists from nonartists by their eye movement patterns. Perception and
Motor Skills, 73(3), 893–894. https://doi.org/10.2466/pms.1991.73.3.893
Aristotle. (1999). Nichomachean ethics (T. Irwin, Trans.). : Hackett.
Astle, A. T., Webb, B. S., & McGraw, P. V. (2011). Can perceptual learning be used to treat amblyopia beyond the critical
period of visual development? Opthalmic & Physiological Optics: The Journal of the British College of Opthalmic Opticians
(Optometrists), 31(6), 564–573. https://doi.org/10.1111/j.1475-1313.2011.00873.x
Astorga, G., Chen, M., Yan, Y., Altavini, T. S., Jiang, C. S., Li, W., & Gilbert, C. (2022). Adaptive processing and perceptual
learning in visual cortical areas V1 and V4. Proceedings of the National Academy of Science, USA, 119(42), e2213080119.
https://doi.org/10.1073/pnas.2213080119
Atherton, M. (1990). Berkeley’s revolution in vision. Cornell University Press.
Audi, R. (2013). Moral perception. Princeton University Press.
Audi, R. (2018). Moral perception defended. In A. Bergqvist & R. Cowan (Eds.), Evaluative Perception (pp. 58–79). Oxford
University Press.
Bach-y-Rita, P., & Kercel, S. W. (2003). Sensory substitution and the human-machine interface. TRENDS in Cognitive Science,
7(12), 541–546. https://doi.org/10.1016/j.tics.2003.10.013
Barwich, A. (2017). Up the nose of the beholder? Aesthetic perception in olfaction as a decision-making process. New Ideas
in Psychology, 47, 157–165. https://doi.org/10.1016/j.newideapsych.2017.03.013
Bayne, T. (2009). Perception and the reach of phenomenal content. The Philosophical Quarterly, 59(236), 385–404. https://
doi.org/10.1111/j.1467-9213.2009.631.x
Bengson, J. (2015). The intellectual given. Mind, 124(495), 707–760. https://doi.org/10.1093/mind/fzv029
Berkeley, G. (1709/2008). An essay toward a new theory of vision. In D. M. Clarke (Ed.), GeorgePhilosophical Writings
(pp. 1–66). : Cambridge University Press.
Biederman, I., & Shiffrar, M. M. (1987). Sexing day-old chicks: a case study and expert systems analysis of a difficult
perceptual-learning task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 640–645. https://
doi.org/10.1037//0278-7393.13.4.640
Bilalic, M., Langner, R., Ulrich, R., & Grodd, W. (2011). Many faces of expertise: Fusiform face area in chess experts and
novices. Journal of Neuroscience, 31(28), 10206–10214. https://doi.org/10.1523/JNEUROSCI.5727-10.2011
Block, N. (2014). Seeing-as in the light of vision science. Philosophy and Phenomenological Research, 89(1), 560–572. https://
doi.org/10.1111/phpr.12135
Block, N. (2022). The border between seeing and thinking. Oxford University Press.
Bradlow, A. R., Akahane-Yamada, R., Pisoni, D. B., & Tohkura, Y. (1999). Training Japanese listeners to identify English/r/
and/l/: Long-term retention of learning in perception and production. Perception & Psychophysics, 61(5), 977–985.
https://doi.org/10.3758/BF03206911
Brainard, D. H., & Freeman, W. T. (1997). Bayesian color constancy. Journal of the Optical Society of America A, 14(7), 1393–
1411. https://doi.org/10.1364/JOSAA.14.001393
Brennan, P. C., Gandomkar, Z., Ekpo, E. U., Tapia, K., Trieu, P. D., Lewis, S. J., Wolfe, J. E., & Evans, K. A. (2018). Radiolo gists can detect the ‘gist’ of breast cancer before any overt signs of cancer appear. Scientific Reports, 8(8717), 8717.
https://doi.org/10.1038/s41598-018-26100-5
Brogaard, B., & Gatzia, D. E. (2018). The real epistemic significance of perceptual learning. Inquiry, 61(5–6), 543–558. https://
doi.org/10.1080/0020174X.2017.1368172
Brownstein, M. (2018). The implicit mind: Cognitive architecture, the self, and ethics. Oxford University Press.
Burns, B., & Shepp, B. E. (1988). Dimensional interactions and the structure of psychological space: the representation of hue,
saturation, and brightness. Perception & Psychophysics, 43(5), 494–507. https://doi.org/10.3758/BF03207885
Burns, E. M., & Ward, W. D. (1978). Categorical perception—phenomenon or epiphenomenon: evidence from experiments
in the perception of melodic musical intervals. Journal of the Acoustical Society of America, 63(2), 456–468. https://doi.
org/10.1121/1.381737
Burnston, D. (2017a). Interface problems in the explanation of action. Philosophical Explorations, 20(2), 242–258. https://doi.
org/10.1080/13869795.2017.1312504
Burnston, D. (2017b). Is aesthetic experience evidence for cognitive penetration? New Ideas in Psychology, 47, 145–156.
https://doi.org/10.1016/j.newideapsych.2017.03.012
Burnston, D. (2020). Fodor on imagistic mental representations. Rivista Internazionale di Filosofia e Psicologia, 11(1), 71–94.
https://doi.org/10.4453/rifp.2020.0004
Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: Learning and memory. Infant and Child Development,
10(1–2), 67–74. https://doi.org/10.1002/icd.248
Chase, W., & Simon, H. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81. https://doi.
org/10.1016/0010-0285(73)90004-2
Chisholm, R. (1977). Theory of knowledge (2 nd ed.). Prentice Hall.
Chomanski, B., & Chudnoff, E. (2018). How perception mediates, preserves, and generates justification. Inquiry, 61(5–6),
559–568. https://doi.org/10.1080/0020174X.2017.1385531
Chudnoff, E. (2016). Moral perception: high-level or perception or low-level intuition? In T. Breyer & C. Gutland (Eds.),
Phenomenology of Thinking. Routledge.
Chudnoff, E. (2017). The epistemic significance of perceptual learning. Inquiry, 61(5–6), 520–542. https://doi.org/10.1080/
0020174X.2017.1357496
Chudnoff, E. (2020). Forming impressions: Expertise in perception and intuition. Oxford University Press.
Churchland, P. M. (1988). Perceptual plasticity and theoretical neutrality. Philosophy of Science, 55(2), 167–187. https://doi.
org/10.1086/289425
Connolly, K. (2014). Perceptual learning and the contents of the perception. Erkenntnis, 79(6), 1407–1418. https://doi.
org/10.1007/s10670-014-9608-y
Connolly, K. (2017). Perceptual learning. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 Edition).
Retrieved from https://plato.stanford.edu/archives/sum2017/entries/perceptual-learning/
Connolly, K. (2019a). Perceptual learning: The flexibility of the senses. Oxford University Press.
Connolly, K. (2019b). Sensory substitution and perceptual learning. In F. Macpherson (Ed.), Sensory Substitution and Augmen tation. Oxford University Press.
Copenhaver, R. (2010). Thomas Reid on acquired perception. Pacific Philosophical Quarterly, 91(3), 285–312. https://doi.
org/10.1111/j.1468-0114.2010.01368x
Copenhaver, R. (2014). Berkeley on the language of nature and the objects of perception. Res Philosophica, 91 (1), 29–46.
https://doi.org/10.11612/resphil.2014.91.1.2
Cowan, R. (2014). Cognitive penetrability and ethical perception. Review of Philosophy and Psychology, 6(4), 665–682. https://
doi.org/10.1007/s13164-014-0185-4
Curby, K., & Gauthier, I. (2014). Interference between face and non-face domains of perceptual expertise: a replication and
extension. Frontiers in Psychology, 5, 955. https://doi.org/10.3389/fpsyg.2014.00955
Dancy, J. (2010). II—Johnathan Dancy: Moral perception. Aristotelian Society - Supplementary Volume, 84(1), 99–117. https://
doi.org/10.1111/j.1467-8349.2010.00188.x
de Harven, V. (2018). Rational impressions and the Stoic philosophy of mind. In J. Sisko (Ed.), History of Philosophy of Mind:
Pre-Socratics to Augustine (pp. 214–235). Routledge.
Deroy, O., & Auvray, M. (2012). Reading the world through skin and ears: A new perspective on sensory substitution. Frontiers
in Psychology, 3(457). https://doi.org/10.3389/fpsyg.2012.00457
Descartes, R. (1637/2001). Discourse on the method, optics, geometry, and meteorology, Revised Edition (P. J. Olscamp, Trans.).
: Hackett.
Deveau, J., & Seitz, A. R. (2014). Applying perceptual learning to achieve practical changes in vision. Frontiers in Psychology,
5(1166). https://doi.org/10.3389/fpsyg.2014.01166/full
Diamond, R., & Carey, S. (1986). Why faces are and are not special. Journal of Experimental Psychology: General, 115(2),
107–117. https://doi.org/10.1037/0096-3445.115.2.107
Dickens, C. (1860/1996). Great expectations. Penguin Classics.
Eberhardt, J. L., Goff, P. A., Purdie, V. J., & Davies, P. G. (2004). Seeing black: Race, crime, and visual processing. Journal of
Personality and Social Psychology, 87(6), 876–893. https://doi.org/10.1037/0022-3514.87.6.876
Ericsson, K. A., Krampe, R. T., & Tech-Römer, C. (1993). The role of deliberate practice in acquisition of expert performance.
Psychological Review, 100(3), 363–406. https://doi.org/10.1037/0033-295X.100.3.363
Farrow, D., & Abernathy, B. (2003). Does the degree of perception-action coupling affect natural anticipatory performance?
Perception, 32(9), 1127–1139. https://doi.org/10.1068/p3323
Ferretti, G., & Caiani, S. Z. (forthcoming). How knowing-that and knowing-how interface in action: The intelligence of motor
representations. Erkenntnis, 1–31. https://doi.org/10.1007/s10670-021-00395-9
Firestone, C., & Scholl, B. (2016). Cognition does not affect perception: Evaluating the evidence for ‘top-down’ effects.
Behavioral and Brain Sciences, 39, 1–72. https://doi.org/10.1017/S0140525X15000965
Fodor, J. (1983). The modularity of mind. MIT Press.
Fodor, J. (1984). Observation reconsidered. Philosophy of Science, 51(1), 23–43. https://doi.org/10.1086/289162
Folstein, J. R., Gauthier, I., & Palmeri, T. J. (2012). How category learning affects object representations: Not all morphspaces
stretch alike. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(4), 807–820. https://doi.
org/10.1037/a0025836
Galati, A., Hock, A., & Bhatt, R. S. (2016). Perceptual learning and face processing in infancy. Developmental Psychobiology,
58(7), 829–840. https://doi.org/10.1002/dev.21420
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in
face recognition. Nature Neuroscience, 3(2), 191–197. https://doi.org/10.1038/72140
Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research,
37(12), 1673–1682. https://doi.org/10.1016/S0042-6989(96)00286-6
Geisler, W., & Kersten, D. (2002). Illusion, perception, & Bayes. Nature Neuroscience, 5(6), 508–510. https://doi.org/10.1038/
nn0602-508
Gendler, T. (2011). On the epistemic cost of implicit bias. Philosophical Studies, 156(1), 33–63. https://doi.org/10.1007/
s11098-011-9801-7
Gibson, E. J. (1963). Perceptual learning. Annual Review of Psychology, 14(1), 29–56. https://doi.org/10.1146/annurev.
ps.14.020163.000333
Gibson, E. J. (1969). Principles of Perceptual Learning and Development. Appleton-Century- Crofts.
Gibson, E. J. (1992). How to think about perceptual learning: Twenty-five years later. In H. L. Pick, P. van den Broek, & D. C.
Knill (Eds.), Cognition: Conceptual and methodological issues (pp. 215–237). American Psychological Association.
Gibson, E. J., Gibson, J. J., Pick, A. D., & Osser, H. (1962). A developmental study of the discrimination of letter-like forms.
Journal of Comparative & Physiological Psychology, 55(6), 897–906. https://doi.org/10.1037/h0043190
Gibson, E. J., & Pick, A. D. (2000). An Ecological Approach to Perceptual Learning and Development. Oxford University Press.
Gibson, E. J., & Walk, R. D. (1960). The “visual cliff”. Scientific American, 202(4), 64–71. https://doi.org/10.1038/
scientificamerican0460-64
Gibson, E. J., Walk, R. D., & Tighe, T. J. (1959). Enhancement and deprivation of visual stimulation during rearing as factors in
visual discrimination learning. Journal of Comparative & Physiological Psychology, 52(1), 74–81. https://doi.org/10.1037/
h0043067
Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62(1), 32–41.
https://doi.org/10.1037/h0048826
Gilbert, C. D., & Li, W. (2012). Adult visual cortical plasticity. Neuron, 75(2), 250–264. https://doi.org/10.1016/j.
neuron.2012.06.030
Gilbert, C. D., Sigman, M., & Christ, R. E. (2001). The neural basis of perceptual learning. Neuron, 31(5), 681–697. https://doi.
org/10.1016/s0896-6273(01)00424-x
Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology,
31, 1–40. https://doi.org/10.1006/cogp.1996.0011
Goldie, P. (2007). Seeing what is the kind thing to do: Perception and emotion in morality. Dialectica, 61(3), 347–361. https://
doi.org/10.1111/j.1746-8361.2007.01107.x
Goldman, A. I. (2016). Expertise. Topoi, 37(1), 3–10. https://doi.org/10.1007/s11245-016-9410-3
Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General,
123(2), 178–200. https://doi.org/10.1037//0096-3445.123.2.178
Goldstone, R. L. (1995). The effect of categorization on color perception. Psychological Science, 6(5), 298–304. https://doi.
org/10.1111/j.1467-9280.1995.tb00514.x
Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49(1), 585–612. https://doi.org/10.1146/annurev.
psych.49.1.585
Goldstone, R. L. (2000). Unitization during category learning. Journal of Experimental Psychology: Human Perception and Perfor mance, 26(1), 86–112. https://doi.org/10.1037/0096-1523.26.1.86
Goldstone, R. L., & Byrge, L. A. (2015). Perceptual learning. In M. Matthen (Ed.), The Oxford Handbook of Philosophy of Percep tion. Oxford University Press.
Goldstone, R. L., de Leeuw, J. R., & Landy, D. H. (2015). Fitting perception in and to cognition. Cognition, 135, 24–29. https://
doi.org/10.1016/j.cognition.2014.11.027
Goldstone, R. L., & Hendrickson, A. (2010). Categorical perception. WIREs Cognitive Science, 1(1), 69–78. https://doi.
org/10.1002/wcs.26
Green, E. J. (2017). Psychosemantics and the rich/thin debate. Philosophical Perspectives, 31(1), 153–186. https://doi.
org/10.1111/phpe.12097
Hume, D. (1757/2008). Of the standard of taste. In S. Copley & A. Edgar (Eds.), Selected Essays. Oxford University Press.
Ishii, R., Kawaguchi, H., O’Malley, M., & Rousseau, B. (2007). Relating consumer and trained panels’ discriminative sensitiv ities using vanilla flavored ice cream as a medium. Food Quality and Preference, 18, 86–96. https://doi.org/10.1016/j.
foodqual.2005.08.004
Jacobs, R. (2009). Adaptive precision pooling of model neuron activities predicts the efficacy of human visual learning. Journal
of Vision, 9(4), 1–5. https://doi.org/10.1167/9.4.22
James, W. (1890/1981). The principles of psychology. Harvard University Press.
Jarodzka, H., van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P. (2013). Learning to see: Guiding students' attention via a Model's
eye movements fosters learning. Learning and Instruction, 25, 62–70. https://doi.org/10.1016/j.learninstruc.2012.11.004
Jefferey, R. (1983). The logic of decision (2 nd ed.). University of Chicago Press.
Jenkin, Z. (2023). Perceptual Learning and Reason-Responsiveness. Noûs, 57(2), 481–508. https://doi.org/10.1111/
nous.12425
Johnston, I. A., Ji, M., Cochrane, A., Demko, Z., Robbins, B., Stephenson, W., & Green, S. C. (2020). Perceptual learning of
appendicitis diagnosis in radiological images. Journal of Vision, 20(8), 16. https://doi.org/10.1167/jov.20.8.16
Jones, M., & Goldstone, R. L. (2013). The structure of integral dimensions: Contrasting topological and Cartesian representa tions. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 111–132. https://doi.org/10.1037/
a0029059
Kellman, P. J. & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. In B. H. Ross (Ed.), Psychology of Learning
and Motivation (pp. 117–165). Elsevier Academic Press.
Kellman, P. J., Massey, C. M., & Son, J. (2009). Perceptual learning modules in mathematics: enhancing students’ pattern
recognition, structure extraction, and fluency. Topics in Cognitive Science (Special Issue on Perceptual Learning), 2(2),
285–305. https://doi.org/10.1111/j.1756-8765.2009.01053.x
Knill, D. (2007). Learning Bayesian priors for depth perception. Journal of Vision, 7(8), 13, 1-20. https://doi.org/10.1167/7.8.13
Knill, D. & Richards, W. (Eds.) (1996)., Perception as Bayesian inference. Cambridge University Press.
Krupinski, E. A. (1996). Visual scanning patterns of radiologists searching mammograms. Academic Radiology, 3(2), 137–144.
https://doi.org/10.1016/s1076-6332(05)80381-2
Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory,
and Cognition, 33(4), 720–733. https://doi.org/10.1037/0278-7393.33.4.720
Leone, M. J., Slezak, D. F., Cecchi, G. A., & Sigman, M. (2014). The geometry of expertise. Frontiers in Psychology, 5(47), 1–9.
https://doi.org/10.3389/fpsyg.2014.00047
Levi, D. M., & Li, R. W. (2009). Perceptual learning as a potential treatment for amblyopia: a mini-review. Vision Research,
49(21), 2535–2549. https://doi.org/10.1016/j.visres.2009.02.010
Li, W., Piëch, V., & Gilbert, C. D. (2008). Learning to link visual contours. Neuron, 57(3), 442–451. https://doi.org/10.1016/j.
neuron.2007.12.011
Lively, S. E., Logan, J. S., & Pisoni, D. B. (1993). Training Japanese listeners to identify English/r/and/l/. II The role of phonetic
environment and talker variability in learning new perceptual categories. Journal of the Acoustical Society of America,
94(3), 1242–1255. https://doi.org/10.1121/1.408177
Lucon-Xiccato, T., Manabe, K., & Bisazza, A. (2018). Guppies learn faster to discriminate between red and yellow than
between two shapes. Ethology, 125(2), 82–91. https://doi.org/10.1111/eth.12829
Lupyan, G. (2015). Cognitive penetrability of perception in the age of prediction: Predictive systems are penetrable systems.
Review of Philosophy and Psychology, 6(4), 547–569. https://doi.org/10.1007/s13164-015-0253-4
Macnamara, B., & Maitra, M. (2019). The role of deliberate practice in expert performance: revisiting Ericsson, Krampe, &
Tesch-Römer (1993). Royal Society Open Science, 6(8), 190327. https://doi.org/10.1098/rsos.190327
Mandelbaum, E. (2017). Seeing and conceptualizing: Modularity and the shallow contents of perception. Philosophy and
Phenomenological Research, 97(2), 267–283. https://doi.org/10.1111/phpr.12368
Markie, P. (2006). Epistemically appropriate perceptual belief. Noûs, 40(1), 118–142. https://doi.
org/10.1111/j.0029-4624.2006.00603.x
Masrour, F. (2011). Is perceptual phenomenology thin? Philosophy and Phenomenological Research, 83(2), 366–397. https://
doi.org/10.1111/j.1933-1592.2010.00443.x
McGrath, S. (2018). Moral perception and its rivals. In R. Cowan & A. Bergqvist (Eds.), Evaluative Perception. Oxford University
Press.
McGugin, R. W., Tanaka, J. W., Lebrecht, S., Tarr, M. J., & Gauthier, I. (2011). Race-specific perceptual discrimination
improvement following short individuation training with faces. Cognitive Science, 35(2), 330–347. https://doi.
org/10.1111/j.1551-6709.2010.01148.x
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–748. https://doi.
org/10.1038/264746a0
Mitchel, A. D., Christiansen, M. H., & Weiss, D. J. (2014). Multimodal integration in statistical learning: Evidence from the
McGurk Illusion. Frontiers in Psychology, 5(407), 1–6. https://doi.org/10.3389/fpsyg.2014.00407
Moss, J. (2012). Aristotle on the apparent good: Perception, phantasia, thought, and desire. Oxford University Press.
Munton, J. (2019). Perceptual skill and social structure. Philosophy and Phenomenological Research, 99(1), 131–161. https://
doi.org/10.1111/phpr.12478
Murdoch, I. (1970). The sovereignty of good. Routledge & Kegan Paul
Mylopoulos, M. (2021). The modularity of the motor system. Philosophical Explorations, 24(3), 376–393. https://doi.org/10.1
080/13869795.2021.1957204
Nanay, B. (2011). Do we see apples as edible? Pacific Philosophical Quarterly, 92(3), 305–322. https://doi.
org/10.1111/j.1468-0114.2011.01398.x
Nanay, B. (2012). Action-oriented perception. European Journal of Philosophy, 20(3), 430–446. https://doi.org/10.1111/
ejop.2012.20.issue-3
Nanay, B. (2017). Perceptual learning, the mere exposure effect, and aesthetic antirealism. Leonardo, 50(1), 58–63. https://
doi.org/10.1162/LEON_a_01082
O’Callaghan, C. (2011). Against hearing meanings. The Philosophical Quarterly, 61(245), 783–807. https://doi.
org/10.1111/j.1467-9213.2011.704.x
O’Callaghan, C. (2019). A multisensory philosophy of perception. Oxford University Press.
O’Callaghan, C. (2020). Multisensory evidence. Philosophical Issues, 30(1), 238–256. https://doi.org/10.1111/phis.12183
O’Hara, W. (1980). Evidence in support of word unitization. Perception & Psychophysics, 27(5), 390–402. https://doi.
org/10.3758/BF03204457
Orlandi, N. (2014). The innocent eye. Oxford University Press.
Perrotta, M. V., Asgeirsdottir, T., & Eagleman, D. M. (2021). Deciphering sounds through patterns of vibrations on the skin.
Neuroscience, 458, 77–86. https://doi.org/10.1016/j.neuroscience.2021.01.008
Petrov, A., Dosher, B. A., & Lu, Z. L. (2005). Perceptual learning: An incremental reweighting model. Psychological Review,
112(4), 715–743. https://doi.org/10.1037/0033-295X.112.4.715
Phillips, S. (2012). Epistemology in classical India: The knowledge sources of the Nyaya school. Routledge.
Poggio, T., Edelman, S., & Fahle, M. (1992). Learning of visual models from examples: A framework for understanding adaptive
visual performance. CVGIP: Image Understanding, 56(1), 22–30. https://doi.org/10.1016/1049-9660(92)90082-E
Prettyman, A. (2018). Perceptual learning. WIREs Cognitive Science, 10(3). https://doi.org/10.1002/wcs.1489
Prinz, J. (2006). Is the mind really modular? In R. Stainton (Ed.), Contemporary debates in cognitive science (pp. 22–36). Black well Publishing.
Pryor, J. (2000). The skeptic and the dogmatist. Noûs, 34(4), 517–549. https://doi.org/10.1111/0029-4624.00277
Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavio ral and Brain Sciences, 22(3), 341–423. https://doi.org/10.1017/s0140525x99002022
Quilty-Dunn, J. (2013). Reid on olfaction and secondary qualities. Frontiers in Psychology, 974(4). https://doi.org/10.3389/
fsyg.2013.00974
Quilty-Dunn, J. (2020a). Perceptual Pluralism. Noûs, 54(4), 807–838. https://doi.org/10.1111/nous.12285
Quilty-Dunn, J. (2020b). Attention and encapsulation. Mind & Language, 35(3), 335–349. https://doi.
org/10.1111/0029-4624.00277
Rangelov, D., Müller, H. J., & Zehetleitner, M. (2012). The multiple-weighting-systems hypothesis: Theory and empirical
support. Attention, Perception, & Psychophysics, 74(3), 540–552. https://doi.org/10.3758/s13414-011-0251-2
Ransom, M. (2020a). Expert knowledge by perception. Philosophy, 95(3), 309–335. https://doi.org/10.1017/
S0031819120000157
Ransom, M. (2020b). Attentional weighting in perceptual learning. Journal of Consciousness Studies, 27(7–8), 236–248.
Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic experience. Is beauty in the perceiv er’s processing experience? Personality and Social Psychology Review, 8(4), 364–382. https://doi.org/10.1207/
s15327957pspr0804_3
Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective Judgments. Psychological Science,
9(1), 45–48. https://doi.org/10.1111/1467-9280.00008
Reid, T. (1764/1997). In D. R. Brookes (Ed.), Inquiry into the human mind on the principles of common sense. Pennsylvania State
University Press.
Reiland, I. (2021). On experiencing moral properties. Synthese, 198(1), 315–325. https://doi.org/10.1007/s11229-018-02004-9
Rescorla, M. (2015). Bayesian perceptual psychology. In M. Matthen (Ed.), The Oxford handbook of the philosophy of perception
(pp. 694–716). Oxford University Press.
Richter, J., Sheiter, K., Eder, T. F., Huettig, F., & Keutel, C. (2020). How massed practice improves visual expertise in reading
panoramic radiographs in dental students: an eye tracking study. PLoS One, 15(12), e0243060. https://doi.org/10.1371/
journal.pone.0243060
Rooney, N. J., Guest, C. M., Swanson, L. C. M., & Morant, S. V. (2019). How effective are trained dogs at alerting their owners
to changes in blood glycaemic levels? Variations in performance of glycaemia alert dogs. PLoS One, 14(1), e0210092.
https://doi.org/10.1371/journal.pone.0210092
Rorty, R. (1979). Philosophy and the mirror of nature. Princeton University Press.
Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behavioral and Cognitive Neurosci ence Reviews, 1(1), 63–75. https://doi.org/10.1177/1534582302001001004
Royet, J., Plailly, J., Saive, A., Veyrac, A., & Delon-Martin, C. (2013). The impact of expertise on olfaction. Frontiers in Psychol ogy, 4(928). https://doi.org/10.3389/fpsyg.2013.00928
Scholl, B., & Tremolet, P. (2000). Perceptual causality and animacy. Trends in Cognitive Sciences, 4(8), 299–309. https://doi.
org/10.1016/s1364-6613(00)01506-0
Schyns, P. G., Goldstone, R. L., & Thibaut, J. (1998). Development of features in object concepts. Behavioral and Brain Sciences,
21, 1–54. https://doi.org/10.1017/s0140525x98000107
Seitz, A. (2017). Perceptual learning. Current Biology, 27(13), R623–R641. https://doi.org/10.1016/j.cub.2017.05.053
Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of unconsciously processed visual stimuli in adult humans.
Neuron, 61(5), 700–707. https://doi.org/10.1016/j.neuron.2009.01.016
Sha, L., Toh, Y. N., Remington, R. W., & Jiang, Y. V. (2020). Perceptual learning in the identification of lung cancer in chest
radiographs. Cognitive Research: Principles and Implications, 5(1), 4. https://doi.org/10.1186/s41235-020-0208-x
Shepherd, J. (2021). Intelligent action guidance and the use of mixed representational formats. Synthese, 198(Suppl17),
4143–4162. https://doi.org/10.1007/s11229-018-1892-7.,
Sheridan, H., & Reingold, E. M. (2017). The holistic processing account of visual expertise in medical image perception: A
review. Frontiers in Psychology, 8(1620). https://doi.org/10.3389/fpsyg.2017.01620
Shogry, S. (2019). What do our impressions say? The stoic theory of perceptual content and belief formation. Apeiron, 52(1),
29–63. https://doi.org/10.1515/apeiron-2018-0001
Siegel, S. (2006). Which properties are represented in perception? In T. Gendler Szabo & J. Hawthorne (Eds.), Perceptual
Experience (pp. 481–503). Oxford University Press.
Siegel, S. (2010). The contents of visual experience. Oxford University Press.
Siegel, S. (2011). Cognitive penetrability and perceptual justification. Noûs, 46(2), 201–222. https://doi.
org/10.1111/j.1468-0068.2010.00786.x
Siegel, S. (2017). The rationality of perception. Oxford University Press.
Siegel, S., & Byrne, A. (2017). Rich or thin? In B. Nanay (Ed.), Current controversies in philosophy of perception. Routledge.
Smith, E. E., & Haviland, S. E. (1982). Why words are perceived more accurately than nonwords: Inference versus unitization.
Journal of Experimental Psychology, 92(1), 59–64. https://doi.org/10.1037/h0032146
Sowden, P. T., Davies, I. R., & Roling, P. (2000). Perceptual learning of the detection of features in X-ray images: A functional
role for improvements in adults’ visual sensitivity? Journal of Experimental Psychology: Human Perception and Perfor mance, 26(1), 379–390. https://doi.org/10.1037//0096-1523.26.1.379
Stokes, D. (2014). Cognitive penetration and the perception of art. Dialectica, 68(1), 1–34. https://doi.
org/10.1111/1746-8361.12049
Swan, K., & Myers, E. (2013). Category labels induce boundary-dependent perceptual warping in learned speech categories.
Second Language Research, 29(4), 391–411. https://doi.org/10.1177/0267658313491763
Swift, J. (1726/2005). Gulliver’s travels. Oxford University Press.
Tamaki, M., Berard, A. V., Barnes-Diana, T., Siegel, J., Watanabe, T., & Sasaki, Y. (2020). Reward does not facilitate percep tual learning until sleep occurs. Proceedings of the National Academy of Sciences of the United States of America, 117(2),
959–968. https://doi.org/10.1073/pnas.1913079117
Tanaka, J. W., & Curran, T. (2001). A neural basis for expert object recognition (Vol. 12, pp. 43–47). Psychological Science.
https://doi.org/10.1111/1467-9280.00308.1.
Teller, P. (1976). Conditionalization, observation, and change of preference. In W. Harper & C. A. Hooker (Eds.), Foundations
of Probability Theory, Statistical Inference, and Statistical Theories of Science. D. Reidel.
Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech facilitates word segmentation. Infancy, 7(1), 53–71.
https://doi.org/10.1207/s15327078in0701_5
Toribio, J. (2018a). Are visuomotor representations cognitively penetrable? Biasing action-guiding vision. Synthese, 198(Suppl
17), 1–19. https://doi.org/10.1007/s11229-018-1854-0
Toribio, J. (2018b). Rich but impenetrable. Synthese, 195(8), 3389–3409. https://doi.org/10.1007/s11229-015-0889-8
Trivedi, D. K., Sinclair, E., Xu, Y., Sarkar, D., Walton-Doyle, C., Liscio, C., Banks, P., Milne, J., Silverdale, M., Kunath, T., Goodacre,
R., & Barran, P. (2019). Discover of Volatile Biomarkers of Parkinson’s Disease from Sebum. ACS Central Science, 5(4),
599–606. https://doi.org/10.1021/acscentsci.8b00879
Van Cleve, J. (2004). Reid’s theory of perception. In T. Cuneo & R. van Woudenberg (Eds.), The Cambridge companion to
Thomas Reid (pp. 101–133). Cambridge University Press.
Vogt, S., & Magnussen, S. (2007). Expertise in pictorial perception: Eye movement patterns and visual memory in artists and
laymen. Perception, 36(1), 91–100. https://doi.org/10.1068/p5262
von Helmholtz, H. (1867/1910). Handbuch der physiologischen optik. In A. Gullstrand, J. von Kries, & W. Nagel (Eds.). L. Voss.
Walk, R. D., & Gibson, E. J. (1961). A comparative and analytical study of visual depth perception. Psychological Monographs:
General and Applied, 75(15), 1–44. https://doi.org/10.1037/h0093827
Watanabe, S. (2011). Discrimination of painting style and quality: Pigeons use different strategies for different tasks. Animal
Cognition, 14(6), 797–808. https://doi.org/10.1007/s10071-011-0412-7
Watanabe, S. (2013). Preference for and discrimination of paintings by mice. PLoS One, 8(6), e65335. https://doi.org/10.1371/
journal.pone.0065335
Watanabe, T., & Sasaki, Y. (2015). Perceptual learning: Toward a comprehensive theory. Annual Review of Psychology, 66(1),
197–221. https://doi.org/10.1146/annurev-psych-010814-015214
Weidner, R., & Müller, H. J. (2009). Dimensional weighting of primary and secondary target-defining dimensions in visual search
for singleton conjunction targets. Psychological Research, 73(2), 198–211. https://doi.org/10.1007/s00426-008-0208-9
Weinberger, N. M., & Bakin, J. S. (1998). Learning-induced physiological memory in adult primary auditory cortex: receptive fields
plasticity, model, and mechanisms. Audiology and Neurotology, 3(2–3), 145–167. https://doi.org/10.1159/000013787
Werker, J. F., Pons, F., Dietrich, C., Kajikawa, S., Fias, L., & Shigeaki, A. (2007). Infant-directed speech supports phonetic cate gory learning in English and Japanese. Cognition, 103(1), 147–162. https://doi.org/10.1016/j.cognition.2006.03.006
Werner, P. (2016). Moral perception and the contents of experience. Journal of Moral Philosophy, 13(3), 294–317. https://doi.
org/10.1163/17455243-4681063
Westheimer, G. (2008). Was Helmholtz a Bayesian? Perception, 37(5), 642–650. https://doi.org/10.1068/p5973
Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences, 10(7),
301–308. https://doi.org/10.1016/j.tics.2006.05.002
Zhang, J.-Y., Cong, J.-L., Klein, S. A., Levi, D. N., & Yu, C. (2014). Perceptual learning improves adult amblyopic vision through
rule-based cognitive compensation. Visual Psychophysics and Psychological Optics, 55(4), 2020–2030. https://doi.
org/10.1167/iovs.13-13739
Zhang, P., Hou, F., Yan, F.-F., Xi, J., Lin, B.-R., Zhao, J., Yang, J., Zhang, M.-Y., He, Q., Dosher, B. A., Lu, Z.-L., & Huang, C.-B.
(2018). High reward enhances perceptual learning. Journal of Vision, 18(8), 11. https://doi.org/10.1167/18.8.11
Zhao, Y., Liu, J., Dosher, B. A., & Lu, Z.-L. (2021). Hierarchical Bayesian models of training accuracy and feedback interaction
in perceptual learning. Journal of Vision, 21(9), 2214. https://doi.org/10.1167/jov.21.9.2214
作者:Zoe Jenkin
译者:温世豪 | 校对:杨吟竹
排版:阿不鲸 | 封面:Grace Heejung Kim
本文来自微信公众号“Posthumanism”
原文:
https://compass.onlinelibrary.wiley.com/doi/10.1111/phc3.12932
微信又改版了,不是常读或星标的公众号,图文推送不再显示封面啦。为获得更好的体验,以及不错过任何一条精美推送,跪求喜欢我们的小伙伴标一个“星标”,这样才能及时收到我们的优质内容。如有转载需要,可直接快捷转载;或在后台回复“转载”,添加bot微信即可,但暂不支持转载到微信外其他平台哦。